contour

This section provides examples of how to use the contour function. At a minimum, the plot function requires the following keywords:

  • df: a pandas DataFrame

  • x: the name of the DataFrame column containing the x-axis data

  • y: the name of the DataFrame column containing the y-axis data

  • z: the name of the DataFrame column containing the z-axis data

Setup

Imports

In [1]:
%load_ext autoreload
%autoreload 2
%matplotlib inline
import fivecentplots as fcp
import pandas as pd
import numpy as np
import os, sys, pdb
osjoin = os.path.join
st = pdb.set_trace

Sample data

In [2]:
df = pd.read_csv(osjoin(os.path.dirname(fcp.__file__), 'tests', 'fake_data_contour.csv'))
df.head()
Out[2]:
Experiment Batch X Y Value
0 Control 101 1 -4 3.5
1 Control 101 1 -2 2.1
2 Control 101 1 0 3.3
3 Control 101 1 2 3.2
4 Control 101 1 4 4.0

Set theme

In [3]:
#fcp.set_theme('gray')
#fcp.set_theme('white')

Other

In [4]:
SHOW = False

Basic contour

In [5]:
fcp.contour(df=df, x='X', y='Y', z='Value', row='Batch', col='Experiment', filled=False,
            cbar=False, xmin=-3, xmax=3, ymin=-3, ymax=3, ax_size=[250,250], show=SHOW,
            label_rc_font_size=12)
_images/contour_12_0.png

Filled contour

Next we can fill the contours using the keyword filled or contour_filled and increase the number of contour lines from the default of 20 to a custom value using the keyword levels or contour_levels:

In [6]:
fcp.contour(df=df, x='X', y='Y', z='Value', row='Batch', col='Experiment', filled=True,
            cbar=True, xmin=-3, xmax=3, ymin=-3, ymax=3, ax_size=[250,250], show=SHOW,
            label_rc_font_size=12, levels=40)
_images/contour_15_0.png

And with a fixed z-range:

In [7]:
fcp.contour(df=df, x='X', y='Y', z='Value', row='Batch', col='Experiment', filled=True,
            cbar=True, xmin=-3, xmax=3, ymin=-3, ymax=3, ax_size=[250,250], show=SHOW,
            label_rc_font_size=12, zmin=1, zmax=3, levels=40)
_images/contour_17_0.png